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ABSTRACT

This report presents a review and classification of image registration meth-
ods that are either currently available in the Analyst’s Detection Support Sys-
tem (ADSS) or scheduled for implementation in ADSS in the near future. The
aim of this report is to gain an overall understanding of our capabilities in
the field of image registration, by identifying key techniques that we are us-
ing, highlighting instances where techniques could be reused to augment other
methods, and identifying areas of methodology that need further development.
In so doing, we aim to gain an understanding of where future work might best
be directed in order to meet our current task goals in image registration.
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A Review of Registration Capabilities in the Analyst’s
Detection Support System

EXECUTIVE SUMMARY

Image registration is the process of overlaying two or more images of the same scene
taken at different times, from different viewpoints or from different sensors. Image regis-
tration is a crucial step in many image processing and vision applications and is widely
used in remote sensing, medical applications and computer vision; it is a broad field with
a wide range of methodologies and techniques. This report presents a review of the reg-
istration methods that are either currently available in the Analyst’s Detection Support
System (ADSS) or those which we have plans to implement in ADSS in the near future.
The aim of this report is to provide some understanding of how our capabilities in regis-
tration are related to one another and how they are placed with respect to the field as a
whole. In particular, we seek to identify areas where we have strong capabilities and areas
where our capabilities need to be improved. In so doing, we aim to gain an understanding
of where future work might best be directed in order to meet our current task goals in
image registration.

At present, most of the registration methods in ADSS are at various stages of com-
pletion, and a few are at the beginning stages of development, in particular those that
deal with video image processing. We are currently well placed then to consider future
directions before embarking on further development in video registration. We also find
that there is room for growth in the area of feature-based registration methods. ADSS
has extensive capabilities in feature detection, but the capabilities have not been applied
directly to the registration problem. Finally, one of the key current task objectives is
to perform real-time georeferencing of motion imagery with other forms of geo-imagery,
e.g., registering a video sequence from a flyover with aerial photography. This is essen-
tially a scene-to-model registration problem and it is apparent that we currently have few
direct capabilities within ADSS to perform this method. It would seem worthwhile then
to devote further attention to this with a view to charting a way forward in our efforts in
image registration.
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1 Introduction

This report presents a review of the registration methods that are either currently
available in ADSS or those which we have plans to implement in ADSS in the near future.
Image registration methods are widely used in remote sensing, medical applications and
computer vision; there is a broad range of methodologies and techniques. One of the aims
of this report is to provide some understanding of how our methods are placed with respect
to the field and identify areas where our capabilities could be improved, in particular with
regard to our current task goals. One way to achieve this is to show how our current
capabilities are placed in proposed classification systems for registration methods, such as
that presented in the review of Zitová and Flusser [28]. To begin with then, this report
will deal primarily with methods by which registration methods may be classified, with
reference to our particular methods.

Another aim of this report is to gain some understanding of how our registration
methods are related to one another. In particular, what key techniques are being used
and where techniques could be reused or leveraged to enhance or extend other methods.
We are also interested in what key techniques we might be missing. To this end, we will be
describing the generic processing steps involved in image registration, as per the review of
Zitová and Flusser [28], and looking at how our methods fit within these processing steps.
As it transpires, we seem to be favouring certain types of methods over others and there
may be plenty of room for growth, in particular in the areas of local feature detection and
matching.

This report will proceed as follows. In the following section, we introduce a classifica-
tion system that may be used to classify the broad range of registration methods available;
our current capabilities in ADSS will be classified according to this system. An alterna-
tive system which separates frame to frame methods from frame to reference methods is
described in Section 2.5, as it is perhaps more pertinent to our interests in registration.
We then proceed to describe the generic implementation steps that are used to implement
any registration method in Section 3, again placing our capabilities with respect to the
system. In Section 4, we will describe the registration methods in detail and highlighting
areas where future work might be directed. Finally, a summary of the report is given in
Section 5.

2 Classification of Registration Algorithms

Following the recent review of Zitova and Flusser [28], one way to classify the broad
range of registration methods available is by the manner of image acquisition. Four main
groups may be defined, as illustrated in Fig. 1 and defined below.

2.1 Multiview Analysis

For the purposes of multiview analysis, images of the same scene are acquired from
different viewpoints. The aim here is to gain a larger 2D or 3D representation of the
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Figure 1: Registration Method Classification (I)

scene. Example applications include recovering 3D shape from stereo images or video and
mosaicing of images of a surveyed area.

On the right side of the figure is shown registration methods that are currently im-
plemented in ADSS [18] (in bold) or that we anticipate could soon be incorporated into
ADSS. These modules will each be discussed in detail in Section 4; for now we will simply
introduce and classify them into the most likely group.

- The “KLT” algorithm is the Kanade-Lucas-Tomasi feature tracker [21] and factori-
sation code [26] designed to track features points in video sequences and reconstruct
3D shape from motion.

- The “reconstruction” code, implemented in the ADSS modules motion and matching

and related code, is an implementation of Phil Torr’s structure from motion toolkit
for Matlab and is based on (rather complex) techniques for 3D reconstruction from
multiple view geometry [7].

2
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2.2 Multitemporal Analysis

In multitemporal analysis, images of the same scene are acquired at different times,
often on a regular basis, and possibly under different conditions. The aim here is to
detect and evaluate change in the scene that occurs between image acquisitions. Example
applications include automatic change detection, security monitoring and motion tracking.

This is where the bulk of the registration capabilities have been grouped; essentially
because our problem domain currently focuses on change detection between pairs of images
and on tracking in video.

- The ADSS Change Detection Subsystem (CDS) [19], also known as “JP 129”, con-
stitutes the model for image registration in ADSS. The method consists of three
modular components: feature detection and matching using correlation in either
the spatial or Fourier domain (as implemented by the modules tie points and
tie fft), transform model estimation (spline module) and image resampling and
transformation (transform).

- The HDRT method is an implementation of image registration using Hierarchical
Discrete Radon Transforms [8, 17] and may be swapped into the CDS to perform
the feature detection and matching step.

- Motion estimation and image registration using wavelets [12] is in the final stages
of completion in ADSS; there are currently three modules implemented: wavelets,
motionField and motionResample. Wavelets have seen broad application to mo-
tion estimation, change detection and shape reconstruction (e.g., stereo reconstruc-
tion [13]).

- ARACHNID, or Automatic Registration and Change Detection, was developed by
Dstl and QinetiQ Ltd and is a registration process based on correlation matching.
An integral part of the methodology is to use one of a number of preprocessing
steps to enhance features that are consistent over time. To this end, existing ADSS
preprocessing modules can be utilised in a pipeline.

- The Thevénaz Algorithm, based on work by Thevénaz et al [23, 24], is a suite of
code that is currently used by the tracking module kalman tracker, the superres-
olution modules multiframe and multi-tv and the mosaicing module mosaic0. It
provides the optimal affine transformation between a pair of image regions, based
on a pyramidal decomposition.

- The optical flow based method, not currently implemented in ADSS, is based on
work by Irani and Anandan [9] on moving object detection in 2D and 3D scenes. The
method performs image registration by fitting affine transformations to a differential
flow field. Matlab code to implement the method, supplied by Campbell-West and
Miller [3], is currently under development.

2.3 Multimodal Analysis

In multimodal analysis, images of the same scene are acquired by different sensors. The
aim is to integrate the information from different source streams to gain more complex

3
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and detailed scene representation.

One of the particular difficulties with multimodal registration is that actual image in-
tensity values cannot be relied upon as the basis for image registration, as generally we
cannot assume consistency between modes. Moreover, a certain amount of variation in
scale must also be anticipated. In general, this excludes the use of area-based correla-
tion methods in favour of methods based on local or higher level feature extraction and
matching. Many registration methods can be applied to the multimodal case by using suit-
able preprocessing steps to extract or enhance image features consistent over the different
modes. For example, the ARACHNID method can be used to register optical and infrared
imagery using preprocessing steps to extract edges combined with positional information
in the metadata. In the literature, methods based on mutual information [22] are leading
edge for multimodal registration. They are based on measures of statistical dependency
and have been used in medical image registration particularly.

Methods that are less suited to multimodal registration are those that require a high de-
gree of overlap between frames and/or a simple model of image transformation, e.g., those
methods that are applied to unimodal video data such as the KLT method, wavelets, the
Thevénaz Algorithm and the optical flow method.

2.4 Scene-to-Model Registration

In this group of methods, an image of a scene and a model of the scene are registered.
The model could be e.g., a computer representation of the scene, such as a map or a DEM
in GIS. The aim is to localise the acquired image in the scene/model and/or compare
them.

At present, there exists no registration method in ADSS that can perform a scene-
to-model registration. However, as the stated primary objective of our efforts in shape
from motion is to perform real-time georeferencing of motion imagery with other forms of
geo-imagery, this is where we should be directing our future efforts in registration.

2.5 A Second Classification Method

A different classification method which perhaps more clearly characterises our two main
interests in image registration, namely change detection and motion tracking, is shown in
Fig. 2. Here the registration methods are classified into only two groups, again depending
on the type of image acquisition, as described below. We we will see, they are special cases
of the multiview, multitemporal and multimodal cases of the previous classification.

2.5.1 Frame to Frame Registration

In frame to frame registration, two frames in a video sequence are registered. Gen-
erally, we are dealing with a high volume of relatively small images (e.g., 24 frames per
second of 704 × 480 frames). We can usually assume a high degree of overlap between
consecutive frames and so a fairly simple transform model, e.g., a translation, similar-
ity, affine or projective transformation. The registration method is implemented for each

4
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Figure 2: Registration Method Classification (II)

pair of consecutive frames in the video sequence and so should be fast but also accurate
in order not to accumulate errors in e.g., tracking applications. In terms of the previ-
ous classification system in Fig. 1, frame to frame registration is either multiview, in the
case of a moving camera and a fixed scene (shape from motion), or multitemporal, in
the case of a stationary camera and changing scene (moving target indicators). It can
also be both multiview and multitemporal, in the case of a moving camera and moving
scene, and this scenario represents some of the most challenging registration problems
(e.g., tracking moving targets from a moving platform, such as that performed by the
module kalman tracker).

As will be discussed in Section 3, a registration method may be divided into a series
of distinct steps; broadly speaking: feature detection, feature matching, transform model
estimation and image transformation. In the CDS registration method, these steps are
implemented using distinct modules that are connected together within the ADSS frame-
work to form the complete registration process. The power of such an approach is that
it allows the swapping in or combining of alternative modules at any stage of the process
in order to improve or refine the process for the particular application. As most frame
to frame methods are still at an early stage of development, it may well be a good time
to consider the broader picture of how best to implement these new methods within the
ADSS paradigm of modular implementation and message passing.

As indicated in Fig. 2, the registration methods that could best be classified as frame to
frame are the “KLT” and “registration” code, wavelets, Thevénaz Algorithm and optical
flow.

2.5.2 Frame to Reference Registration

In frame to reference registration, two separate images, usually taken at quite different
times, are registered. The images can be very large, e.g., strip map SAR images with
dimensions of many thousands of pixels. The registration of the two images is typically
more complex and requires more time to implement. The transformation should accom-
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modate a lower degree of image overlap and cater for local deformations. In terms of the
previous classification system in Fig. 1, frame to reference registration is typically multi-
temporal and finds application to change detection, mosaicing or data fusion. It may also
be multimodal and/or be a case of scene-to-model registration. As indicated in Fig. 2,
frame to reference registration is where the more mature registration methods in ADSS
are grouped, in particular CDS, HDRT and ARACHNID. They are also the most modular
and would seem to fit most comfortably within the ADSS modular development paradigm.

3 Implementation of Registration Methods

A typical registration method may generally be broken down into several distinct steps,
as shown in Fig. 3. As will be discussed in more detail below, there are two main branches
of registration methods. Feature-based methods first extract salient structures or features
in the image and then implement a subsequent feature matching step to generate point
correspondences, or “tie-points”. In contrast, area-based methods use image areas or
tiles to find the statistically best estimate of the translation vector. For the purposes of
successive processing stages, this translation vector is considered to be a tie point with
origin located at the centre of the image tile.

Both feature-based and area-based methods then feed into the subsequent transform
model estimation and image resampling and transformation steps. It should be noted
that although conceptually the series of steps used in image registration can be considered
separately, in practice they are often merged together in the interests of speed, efficiency, or
effectiveness. For example, the feature matching step may be combined with the transform
model estimation step in order to generate feedback into the feature matching algorithm
(as is the case for the Thevénaz Algorithm and the RANSAC algorithm [7]).

3.1 Feature-Based Methods

This approach is based on the extraction of salient structures or features in the image,
e.g., significant points, lines or regions. The resulting features are called control points
(CPs). The CPs should be distinct, spread through the image and detectable in both
images. There is wide array of literature on feature detection in images, ranging from edge
and corner detectors, to line detection and region segmentation algorithms. ADSS provides
a number of modules to perform feature detection, in particular the Plessey [6] module
for corner detection (also known as the Harris corner detector) and various prescreeners,
which may also be considered feature detectors. Once features are detected in the image
pair, the features are matched to form point correspondences between the pair of images,
usually following some underlying model for the image registration. Matching can be
based on e.g., the grey levels in the neighbourhood of the CPs (local correlation), the
feature spatial distribution (binary and grey level shape characteristics), or the spatial
relationship between CPs. These matches may then be used as input to the transform
model estimation step.

Feature-based methods are typically applied when the local structure information is
more important or reliable than the information carried by the specific intensities. Its

6
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Figure 3: Registration Method Implementation

strength is that it can be used to match images of a completely different nature (e.g., photos
with maps) and can handle complex image distortions (e.g., distortions of higher order than
projective). A common drawback is that the features may be hard to detect or inconsistent
in one or both of the images. To this end, it is important to use discriminative features
and robust feature descriptors that are invariant to all assumed differences between the
images. Moreover, the point correspondence problem can be difficult to solve, ill behaved
and suffer from mismatches and crossovers. Methods using spatial relationships can be
used if the detected features are ambiguous or if they are locally distorted; e.g., graph
matching, clustering or Chamfer matching [1].

It is interesting to note from Fig. 3 that, despite the fact that feature-based methods
constitute an entire branch of registration methodology, none of the recognised registra-
tion methods in ADSS fall into this category. Only the “KLT” and “reconstruction” code,
which are considered methods of generating shape from motion as opposed to image reg-
istration, fall into this category. This would suggest there is probably plenty of room for
growth in ADSS in terms of developing further registration algorithms within this branch,
complementing the strengths of the existing methods. Particular applications would be
multimodal registration and registrations involving complex image distortions.

7
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3.2 Area-Based Methods

This approach merges the feature detection and feature matching steps into a single
step to produce statistically optimal translation vectors on the basis of matching (most
often rectangular) image areas within the image. These are also called correlation or
template matching methods. The matching process is typically a cross correlation (CC)
technique that uses pixel intensities rather than local image structure to find the optimal
translation vector between the two areas. Subpixel accuracy is possible using interpolation
techniques and the frequency domain may be used to improve efficiency (in the case of
larger windows) and remove frequency dependent noise.

Perhaps the greatest restriction on these methods is through the use of rectangular
windows within which the correlation is carried out, as this restricts the local transform
model to essentially a translation (although the global transform model may certainly
be of higher order). Although CC methods can cope with some rotation and scaling,
without appealing to generalisations of CC to more complex deformations, locally affine
or projective transformations cannot easily be accommodated. Another drawback is that,
because the approach is often based on a tiling strategy that is independent of image
content, featureless regions can easily be matched together leading to high correlations
and misleading results. The methods are also sensitive to noise in image intensities and
are not well suited to multimodal registration without suitable preprocessing.

An important subgroup of the area-based methods are multiresolution registration
methods based on coarse-to-fine strategies, or pyramids. The advantage with pyramidal
methods is that matching with respect to the large scale image features is achieved at the
coarsest resolution first, free from noisy perturbations at the local (finer) level. This robust
result may then be used to guide matching at the next level of the pyramid, where the
estimates are improved upon. The process continues down through the levels of the pyra-
mid, thus achieving a progressively finer resolution of matching. At every level, pyramids
significantly reduce the search space and thus save on the necessary computational time.
The downside with using pyramids is that the strategy fails if a false match is identified
at a coarser level in the pyramid; it is recommended that a backtracking or consistency
check be incorporated into the algorithm.

Of the registration methods in ADSS that may be classified as area-based, all but
the CDS method employ some kind of coarse-to-fine strategy: HDRT (employs image
decimation), wavelets (inherently multiresolution), ARACHNID method and Thevénaz
Algorithm (both employ pyramids), and optical flow (uses a three tier Gaussian pyramid).

3.3 Transform Model Estimation

The third step in the registration process is to use the feature correspondences to
estimate the model transformation that maps one image to the other. Typically, an
underlying model is assumed that is based on knowledge of the image acquisition and sensor
characteristics. For example, a global model might be used such as simple translation,
similarity, affine or projection. The correspondences are used to optimise the parameters
associated with this transform. Depending on the choice of transform, there may be more
correspondences than the minimum necessary to estimate the required transform. A least

8
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squares fit may be used so that the transform minimises the sum of the square errors at
the feature locations.

The transform model may be classified into two types: global transformations, which
use all correspondences for estimating one set of the mapping function’s parameters valid
for the entire image; and local transformations, which treat the image as a composition
of patches and the function parameters depend on the location of their support in the
image. Radial basis functions are an example of global mapping transforms that are able
to handle locally varying geometric distortions. In particular, thin-plate splines are an
example of radial basis functions that are currently implemented in the CDS registration
method, by the module spline. Thin plate splines are known to give good results but the
computations can be time consuming. Other splines that are used for image registration
include B-splines and elastic body splines. Existing capabilities in ADSS for transform
models will be discussed in more detail in the context of registration methods in Section 4.

3.4 Image resampling and transformation

In the final step of image registration, the sensed image (this could be considered the
frame in frame to reference registration) is transformed by means of the mapping function
into the reference image (or reference image). An appropriate interpolation technique
is used to compute points falling between grid points (i.e. at non integer coordinates),
e.g., nearest neighbour or bilinear interpolation are often sufficient.

Image transformation can be done in either the forward or backward direction. In the
forward direction, each pixel in the sensed image is directly transformed using the esti-
mated mapping functions. However, due to rounding and discretisation errors, this can
lead to holes and/or overlapping pixel values. For this reason, the backward direction is
usually preferred. In this case, the inverse transform is computed and coordinates in the
reference image are mapped to the sensed image domain, from which a pixel value is com-
puted by interpolation. The ADSS module transform, which is part of the CDS method,
employs a backward transformation and allows for a choice of four interpolation methods:
nearest neighbour, bilinear, quadratic and least squares. The bilinear interpolant, though
simple, offers a good trade off between computational cost and complexity. In contrast,
nearest neighbour interpolation should be avoided in most cases because of artifacts in the
sample image.

4 Current Registration Capabilities in ADSS

In this section, we will describe in more detail the registration methods that are cur-
rently available in ADSS or that we anticipate could soon be incorporated into ADSS. In
particular, we report on each method in the context of classification and implementation
methods, and highlight areas where future work might be done. We will look at those
methods that have been classified as frame to reference first, followed by the frame to
frame methods.

9



DSTO–TR–1632

4.1 Change Detection Subsystem

The Change Detection Subsystem [19] (CDS), developed from the work by Nash [14]
under Joint Project 129 (Airborne Surveillance for Land Operations), constitutes the cur-
rent model for image registration, and is classified as a multitemporal, frame to reference,
area-based method of registration. The method uses an area-based correlation technique
to generate a sparse and evenly distributed set of likely feature correspondences that
are subsequently modeled by a spline function and the imagery warped into alignment.
Change detection may then be performed between the two images. The method consists
of three modular components: feature detection and matching using correlation in either
the spatial or Fourier domain, as implemented by the modules tie points and tie fft;
transform model estimation via the spline module; and image resampling and transfor-
mation using the transform module. The modular approach allows for swapping in or
combining of alternative modules at any stage of the process for the purposes of testing,
improvement and refinement.

The tie points module is an area-based feature matching process that attempts to
identify feature matches in two images, covering approximately the same area, with ap-
proximately the same scale and orientation. The image is divided into tiles, where each
tile is divided into sub-blocks. A correlation technique is used to find the best matching
translation vector within each sub-block, and the sub-block with the highest correlation
is retained provided that it agrees with sufficient other sub-blocks. The translation vector
is considered to be a tie point with origin located at the centre of the image tile. Subpixel
accuracy is possible using interpolation around the optimum point. There are two alter-
native interpolation methods: quadratic fit in both x and y directions; and least squares
quadratic fit through 9 points. The method can also use positional information (i.e. image
geocoding) as a starting point for registration; this means that smaller regions can be used
provided that the unknown component of the translation is small.

The matching algorithm is subject to the following constraints: the size of the sub-
block should be more than twice the registration error; there is minimal rotation between
images; and the images have similar brightness and sufficient contrast. These are typical
requirements on area-based correlation techniques and they are generally only suitable
for simpler translations. Moreover, multimodal registration is not really possible with
this method without suitable preprocessing due to the dependence on image intensities.
The algorithm is therefore well suited to frame to frame registration, where there is high
overlap between the frames to be registered and in particular minimal rotation and change
of scale. At present however, the ADSS interface layer is written for image pairs and the
test scripts are for large strip map images (8K × 13K pixels); these have been applied
successfully to SAR, EO and IR imagery. It should be fairly straightforward for the code
to be put into a library to be used more generally in frame to frame registration.

Correlation methods do not exploit structure in the image (i.e. image features) and are
sensitive to errors from noise and different sensor types. Featureless regions can easily be
matched together leading to high correlations and misleading results. The tie points

module is able to address this problem by using a threshold that specifies a minimum
required contrast and a minimum number of non-zero pixels before a tie-point is generated.

The tie fft module, which has not yet been documented, is also an area-based
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feature matching process but handles the correlation process in the frequency domain. In
particular, following other Fourier methods, it estimates the translation between two areas
by finding the corresponding phase shift in the frequency domain. Depending on window
size this can be more efficient than using the spatial domain. It also has an algorithm for
subpixel accuracy estimates and a quasi coarse-to-fine strategy based on truncation of the
Fourier terms in the frequency domain. This is necessary because the method works best
for small values of translations and a coarse-to-fine strategy allows a given translation to
subtend larger regions at coarser levels. There are however outstanding implementation
issues that have yet to be addressed, as noted in the code. In particular, a second pass
over the data is still required to correct for phase wrapping and improve the translation
estimate.

The spline module uses the tie-points generated by tie points or tie fft to pro-
duce a thin plate spline warping equation that maps the reference image to the sensed
image. Thin plate splines are a global model of image registration, while allowing for
local distortions. An option is available that allows the user to choose between an ap-
proximation model and an interpolation model for the thin plate spline. In particular,
the approximation model specifies that the spline does not have to pass directly through
the points given; the tolerance is given by a smoothing parameter. Due to the fact that
ADSS processes images as streaming input data, a thin plate spline equation is generated
for every set of three consecutive rows of tie-points. Typically then there may be many
thin plate splines generated for any given image. The module works best if it receives all
the tie-points at once and in this sense it is not readily parallelisable (although the speed
of the algorithm does not appear to be an issue).

Thin plate splines are complex transform models that can handle both global mappings
and local image distortions. In this sense they are best suited to the frame to reference
registration problem that deal with large images with local distortions. If the registration
area is small or if in particular we are registering frame to frame, the use of simpler
transform models that have fewer degrees of freedom is more appropriate. For example,
Caprari [4] has reported on image registration using a tiling strategy with small windows
and local best-fit projective transforms. These transforms map a local square into a general
quadrangle while preserving straight lines. The work applies mainly to wide angle images
that require radiometric (intensity) registration. The work is essentially already present
in ADSS through the implementation of the ARACHNID method, which is also based on
optimal projective transforms, and would require a generalisation of spline or suitable
replacement to actualise.

Finally, the transform module generates a registered version of the reference image
with respect to the sensed image using a backward transformation. There are two modes
of operation for this module. In tiled mode, the new image domain is divided into small
tiles and the spline equation is used to find the corners of the tiles in the reference image.
A projective transformation between the two is then calculated to map the reference to
the new image. This process is fast provided tiles are not too small, however tiles that
are too large start to introduce errors. The other mode of operation is to use the spline
equations to map each individual point in the image; this is slower but is accurate. There
are a number of options available within transform for pixel interpolation in the backward
transformation, including nearest neighbour, bilinear, quadratic and least squares.
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Based on the above observations, the following provides a summary of some of the
areas where future effort on the CDS method could be directed:

- Application of tie points code to frame to frame registration. Essentially, this
could amount to putting the code into a library for use by other modules. However,
it would also be good to make some decisions regarding the broader picture of how
best to implement frame to frame registration within the ADSS paradigm of modular
implementation and message passing, perhaps using tie points as a test bed.

- Generalisation and consolidation of transform model estimation code. At present,
only thin plate splines are implemented as a standalone method for transform model
estimation (in the module spline), though there appears to be other examples
of transform code throughout ADSS (e.g., affine and projective transforms). Other
transforms, e.g., projective transforms, would be more appropriate for frame to frame
registration. Work on this would tie in with broader decisions regarding the broader
picture of how best to implement frame to frame registration.

- Completion of work on tie fft. There are some unfinished elements of the code
and there needs to be some documentation written for the module. In the longer
term, there exist algorithms for the frequency domain for the implementation of
correlation for rotated and scaled data that could be investigated.

- Modification of the algorithm to exploit phase information and as such have appli-
cation to coherent change detection.

4.2 The Hierarchical Discrete Radon Transform Method

The Hierarchical Discrete Radon Transform (HDRT) method of registration [8, 17]
is classified as multitemporal, frame to reference, and area-based. Radon transforms [2]
have been used successfully to extract roads and faint trails in Synthetic Aperture Radar
(SAR) imagery [5], as they are robust to background clutter and specular noise. The HDRT
provides a hierarchy of Radon transforms, from the Radon transform of the entire image,
right down to the Radon transform of single pixels in the image. The resulting HDRT
structure is a coarse-to-fine pyramid that can be applied to hierarchically register images.
Two separate ADSS modules are used in pipeline by the HDRT method: hdrt, which
generates the actual pyramid of Radon transforms for a given image; and registration,
which registers the HDRTs of two images and outputs the corresponding tie-points. These
tie-points can then be fed to the spline and transform modules of the CDS method
discussed previously.

The registration process starts at the coarsest level of the HDRT, where there are two
Radon tiles that subtend the domain of the reference and sensed images. A correlation
is then carried out between the two tiles, using a fast algorithm based on 1D convolution
followed by backprojection. This provides a robust estimate of the global translation
between the two images. It should be noted this method is mathematically equivalent
to a standard 2D correlation in the spatial domain [16] (as used in the CDS method).
That is, cross correlation in the spatial domain is equivalent to 1D correlation followed
by back-projection in the Radon domain. In order to exploit the linear feature extraction
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capabilities of the Radon transform, a non-linear feature detection step is required. For
example, thresholding of the HDRT in order to extract strong linear features. This would
convert the current technique from an area-based method to a feature-based method and
in so doing allow for multimodal image registation.

If there is a known global rotation between the two images, this is easily factored in
with little additional computational cost using the Radon Shift Theorem. The translation
estimation represents a weighted average of all translations taking place over the correlated
tiles and may represent several different translations taking place within the correlated
tiles. At present only the best estimate satisfying a specified threshold is used. Following
the method of a pyramidal strategy, this coarse result is then used to guide matching at
the next level of the pyramid, where the estimates are improved upon. The HDRT method
implements a double overlapping (or four to one) tiling strategy that allows for a denser
and more accurate matching of tiles. This guided process continues down through the
pyramid to the desired level, thus achieving a progressively finer resolution of matching.
A tie-point is then output for each match at this level.

One of the advantages of the pyramidal strategy is that it is able to register images
that are separated by potentially large global translations. At the coarsest level, the search
space is significantly reduced and thus it is possible to perform correlation over the entire
image domain. This is in contrast to the CDS method for example, where correlation
is done using subblocks at the original image resolution. Moreover, the coarse-to-fine
strategy is able to gradually home in on local variations caused by terrain elevations and
errors in global parameters. The use of the Radon transform has a smoothing affect on
any specular noise in the image and this has particular application to registering SAR
images. As the correlation is carried out on image features (straight lines), as opposed to
image intensities in the spatial domain, it is less sensitive to local intensity variations, and
could be well placed to handle multimodal registration.

However, the HDRT has the same restrictions as other area-based correlation methods:
it is only well suited to predicting local translation estimates, as opposed to more complex
local transformations. In particular, there should be minimal (unknown) rotation and
scale variance between the areas to be matched and they should have similar brightness
and sufficient contrast. This latter restriction can be mitigated by the use of a prepro-
cessing step that normalises the image data to zero mean and unit variance (this step is
unnecessary for complex imagery, as the mean of a complex image tends to zero). The
method may not be well suited to frame to frame registration however, due to the high
computational associated with constructing the HDRTs. Another potential downside of
the method is that the pyramid strategy fails if a false match is identified at a coarser
level in the pyramid. Backtracking or consistency checks should be incorporated into the
algorithm.

Future work could be directed to the following areas:

- Introduction of a non-linear processing step to implement feature detection and allow
for multi-modal image registration.

- Implementation of a backtracking or consistency check in order to cope with false
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matches at coarse levels. For example, an optimal graph search algorithm is pre-
sented in [10].

- Processing of multiple translation estimates. At present only the best estimate
is handed down to the next level, when there may be several genuinely different
translations taking place within the correlated tiles. This strategy could also be
used to mitigate false matches.

- Extension of the algorithm to similarity matching. At present the matching algo-
rithm handles a known global rotation using the Radon Shift Theorem. Preliminary
discussions indicate this could be extended to unknown global rotations and, by
extension, to unknown local rotations at finer levels of the pyramid. If unknown
scaling could also be introduced, this would extend the current translation match-
ing algorithm to a full similarity matching. Methods already exist in the frequency
domain and these could be investigated [20].

- Implementation of interpolation for peak detection after correlation. Currently, no
interpolation is implemented; it should be straightforward to apply existing interpo-
lation methods in ADSS (e.g., in the CDS method).

- Modification of the algorithm to exploit phase information and as such have appli-
cation to coherent change detection.

4.3 ARACHNID

The ARACHNID (Automatic Registration and Change Detection) method of regis-
tration is classified as multitemporal, frame to reference, and area-based. The method,
developed by Dstl and QinetiQ Ltd, finds the optimal projective transformation between
an image pair using a correlation-based technique. The projective search space is explored
from the outset using the whole image via a pyramidal decomposition of the image. After
the optimal projective transformation is estimated at the coarsest level, the image is re-
sampled before proceeding to the next level of the pyramid to refine the estimation. Once
the images are registered at the finest level, change detection is then carried out.

The ARACHNID method is designed to work in concert with a number of image
preprocessing algorithms. Their role is to make edges or high frequencies more prominent
in some way, as it is the presence of boundaries between objects or ground cover that are
usually consistent over time (as opposed to surface brightness which varies according to
lighting, weather, season, etc.). Algorithms investigated include: intensity gradient, high
pass filtering, local standard deviation, local entropy and local Eigen analysis. The latter
three of these have been found to be the most effective. As the preprocessing steps can
generally be pipelined from other existing ADSS modules they have not been carried over
to ADSS from the original Dstl code.

The use of preprocessing steps and scale invariant transformations mean the ARACH-
NID method is well placed to handle multimodal image registration. In particular, it has
the ability to register optical and infrared imagery, including the bi-modal case. This has
been automated by using positional information held in the image metadata as the start
conditions for registration. The projective transformation sets constraints that, in flat
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environments, are beneficial and are known to work well, e.g., for frame to frame regis-
tration. However, for more general frame to reference registration, the technique needs
to be extended to handle more varied terrain elevations where the transform would be
inadequate.

At present, the ARACHNID module in ADSS is driven by a command of the form,
(data cell (x y w h) (x0 y0 x1 y1 x2 y2 x3 y3 x4 y4)),

where (x, y) is the top left corner of a cell of width w and height h centered on the
detection in the main image, which approximately maps to the region with corners (x0,

y0) . . . (x3, y3) in the reference image. The corners are numbered clockwise from the
top left corner and the reference coordinates may be fractional. For any given data cell

command, the reference tile is aligned with the main tile and the projective transformation
which achieves this is output as either a new data cell command, a tie-point, or a series
of tie-points at the corners of the cell.

The following points indicate areas where future work might be directed:

- Application of method to frame to frame registration. At present, the ADSS interface
layer handles only image pairs.

- Extension of the method to handle more complex global transforms other than pro-
jective transforms. This is expected to be carried out by Dstl some time in the future
and hopefully will follow a modular design in the manner of e.g., CDS.

- Documentation of the method. In particular, due to lack of documentation from
QinetiQ, we do not know how the extensive set of sample parameters are used in the
algorithm.

- A new module that uses pyramidal decomposition together with a simple search
method to find a projective transform between two images is currently been investi-
gated.

4.4 Complex Discrete Wavelet Transform

The Complex Discrete Wavelet Transform (CDWT) [11] is classified as a multitempo-
ral, frame to frame, area-based transform. Wavelet decomposition has found application
in stereo vision, shape from motion, motion estimation and image registration and could
equally be classified as a frame to reference registration method. The CDWT provides a
multiresolution decomposition of the image into a pyramid structure containing the high
frequency image content at dyadically increasing scales in the image. The high frequency
information is obtained at each level by applying a high pass filter with complex coefficients
in both the vertical and horizontal directions separately. In the current implementation,
this results in a set of six complex output images at each scale, corresponding to six dif-
ferent orientations in the spatial domain (paired in symmetry about the horizontal axis
at angles 15, -15, 45, -45, 75 and -75 degrees). The residual low frequency information is
passed on to the next level of decomposition in the pyramid. The strength of the wavelet
representation is that it is able to characterise an image on the basis of generic image

15



DSTO–TR–1632

features, in particular arbitrarily oriented edges, at all scales within the image (from the
local to the global scale).

In the CDWT method of registration [12], the six high frequency results at a given
scale are compared using a similarity distance based on the square of the absolute value of
pixel differences between the two images. An overall similarity distance is computed as the
summation of the six individual results. Image matching using CDWTs is then an exercise
in determining the translation that minimises the overall similarity distance at the given
scale. At the coarsest scale, the process begins by finding the translation vector whose
origin is at the centre of the reference image that has the minimum similarity distance.
After a process of relaxation and smoothing, this translation is then bilinearly interpolated
to the next finest level. The result is four translation vectors with origins at the centre
of each quadrant in the reference image. The process continues until the desired fineness
of scale is reached, forming what is know as a motion vector field (as produced by the
module motionField). At this stage, the algorithm would be able to interface with the
existing model of frame to reference registration, by outputting tie-points at the finest
level. In such case, one would probably not generate the complete motion vector field, but
stop part way down the pyramid and follow only a single path to the bottom level from
each pixel at that level. The motion field has been used in ADSS to generate a panning
video from two views of a scene (implemented by the module motionResample).

As has been mentioned above for other pyramidal schemes, hierarchical matching al-
gorithms provide a means to reduce the complexity of matching over the entire image
domain while keeping the same effective measurement range. This allows matching be-
tween images that do not have a high overlap; i.e. they are well suited to frame to reference
registration. The disadvantage however is that it can impose vectors from coarse levels
onto inappropriate regions of the finer levels and special strategies are required to recover
from errors that are handed down from the top of the pyramid. Moreover, the registration
method is again essentially correlation based and only appropriate for determining transla-
tions at the given scale, as opposed to more complex local distortions. The other potential
disadvantage of pyramid strategies is the computational cost of producing a pyramid for
each frame to be matched. This may detract from the application of CDWTs to video
registration applications.

At this stage, the wavelet code in ADSS only works on two given image frames and
so strictly speaking is not a complete frame to frame registration method. In order to
generalise to a whole video sequence a generator script could be used to cycle over the
frames. Thought is currently being given as to how this can be achieved more dynamically.
In terms of future work, the following areas could be considered:

- Extension of the algorithm to frame to frame registration. At present, the modules
in ADSS (wavelets and motionField) work with a pair of images but not a whole
video sequence.

- Integration with current frame to reference model of registration, by using tie-points.

- Documentation of the method.
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4.5 The Thevénaz Algorithm

The Thevénaz Algorithm [23, 24] is classified as a multitemporal, frame to frame, area-
based transform. The algorithm provides the optimal affine transformation between a pair
of image regions, based on a pyramidal image decomposition. More specifically, the pyra-
mid is constructed using a cubic spline representation of the image and the optimisation
of the affine transform is carried out using a modified Marquardt-Levenberg method. The
registration method is closely related to the ARACHNID registration method, which seeks
to find the optimal projective transformation between a pair of images using pyramidal
decomposition (a projective transform has eight degrees of freedom; two more than an
affine transform). The observations that apply to the ARACHNID method can also be
applied here. In particular, the affine transformation sets constraints that are appropriate
for frame to frame registration but often not frame to reference registration. It is therefore
best suited to video applications and is currently used by a number of video processing
modules in ADSS, including kalman tracker (Kalman video tracking module), multi-tv
and multiframe (video super resolution), and mosaic0 (video mosaicing).

The algorithm is currently not implemented as a standalone registration module, but
is available as a backend distribution that may be compiled for the given application.
There are plans to rewrite the distribution and put it into a library, in part so that it
can be distributed freely and in part because there is room for improvement. The key
interface function is regAffine, which takes a pair of images, a region of interest and
a set of tuning parameters, and returns the six parameters describing the optimal affine
transform. Certain problems have been identified with the performance of regAffine

however. In particular, it seems to be incorrectly matching images by skewing or shrink-
ing the fragment onto the main image. It does not seem to give enough weighting to large
unambiguous regions of the image that should be matched easily, despite experimentation
with the tuning parameters and different masking regimes. Once the unexpected skewing
begins, an image that is completely mismatched and heavily skewed is often produced a
few frames further on. It also appears to have problems coping with noise; the tracking
process is easily misled when matching against noisy pixels.

Some thoughts on where future work could be directed:

- Rewriting of distribution and putting it into a library.

- Addressing of some of the issues with the implementation to see if the problems can
be fixed.

- Application of approach to frame to reference registration. ARACHNID employs
a similar method and has been used successfully in frame to reference registration.
The method may also be extended to handle more complex global transforms other
than affine transforms.

- Supplementation of documentation. The code, which was downloaded from the
website of Thevénaz [25], has minimal documentation unfortunately.
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4.6 Optical Flow

The optical flow based method that we are considering implementing in ADSS is clas-
sified as a multitemporal, frame to frame and area-based registration method. It is based
on work by Irani and Anandan [9] on moving object detection in 2D and 3D scenes and has
been further evaluated in a report by Campbell-West and Miller [3]. The work is aimed
at motion detection algorithms for affine sensor motions and is suited to frame to frame
registration in video. The affine transformations are fitted to the differential flow field as
derived from the methods of optical flow. The optical flow constraint requires that motion
between frames be small, but this is extended through the use of a three-tier Gaussian
pyramid decomposition. In particular, at the coarsest level of the pyramid, a shift of four
pixels is represented by a one pixel shift satisfying the optical flow constraint. The method
is similar to both the ARACHNID method and Thevénaz Algorithm, through the use of
affine transform mappings and pyramidal decomposition.

The particular application of the method is to moving target detection in video se-
quences. The registration process is used to register consecutive frames before performing
a local misalignment to identify moving targets. The scene is classified as a 2D scene when
it can be approximated by a flat surface and a 3D scene when there are significant depth
variations. The method provides a unified approach to handling moving-object detection
in both 2D and 3D scenes, based on the stratification of the problem into scenarios which
gradually increase in complexity. Currently, there is no C code or any modules in ADSS
to perform the optical flow method of registration, although it is equivalent to the CDWT
in its output and could be used as an alternative. However, Matlab code provided by
Cambell-West and Miller [3] is in the process of being completed and tested, and this will
enable a more thorough assessment of the algorithm. When implemented in ADSS, the
optical flow method would provide a useful alternative to the module kalman tracker,
which implements tracking using the Thevénaz Algorithm in combination with a Kalman
filter, and it may also be evaluated against the ARACHNID method. The disadvantage
of the method is that, without further generalisation of the pyramidal approach, it seems
to have limited application to frame to reference registration.

Some areas where future work could be directed are as follows:

- Obtain and test Matlab code implementation.

- Port code to ADSS, preferably within a modular framework of frame to frame reg-
istration.

- Evaluate against other methods, in particular the Thevénaz Algorithm and ARACH-
NID method.

4.7 KLT Feature Tracker

The combined KLT feature tracker [21] and factorisation method [26] is classified as
a multiview, frame to frame, feature-based method of registration. Although the method
provides a means of reconstructing shape from motion, as opposed to image registration
per se, components of the process could be applied in methods that more directly deal

18



DSTO–TR–1632

with image registration, in particular those based on image features (as opposed to ar-
eas). The method relies on a high overlap between consecutive frames and it is based on
image intensity comparisons; it is not well suited for frame to reference or multimodal
registration.

The purpose of the KLT feature tracker is to identify and then track reliable features
from frame to frame in a video sequence. In the context of frame to frame registration,
these correspond to the two key mechanisms that underpin feature-based methods of
registration; feature detection and feature matching (as illustrated in Fig. 3). The KLT
method selects good features to track on the basis of optimising the overall tracking quality,
as well as traditional measures of “interest” or “cornerness”. Given the position of the
feature in one frame, the position in the next frame is determined by finding the translation
that minimises the dissimilarity over the (usually small) feature window. The quality of
image features is monitored during tracking by using a measure of feature dissimilarity
that quantifies the change of appearance of the feature between the first and the current
frame. If the dissimilarity is too high, the feature is abandoned.

In the context of image registration, the KLT feature tracker generates a set of tie-
points between consecutive frames in the image. Robustness can be enforced by requiring
the feature be tracked over a given number of frames. The tie-points can then be used in
the transform model estimation step of the registration process and the two frames regis-
tered. More specifically, an appropriate mapping function such as an affine or projective
transform can be chosen for the assumed geometric deformation between frames. The as-
sociated parameters are then estimated by means of a least squares fit (in general we will
have many more tie-points than we need to estimate the transform), so that the mapping
function minimises the sum of square errors at the tie-points. In practice however, not all
the tie-points will correspond to the background of the image, as features corresponding
to moving objects will also be tracked. One of the key applications of frame to frame reg-
istration is to allow a simple pointwise comparison to expose independent object motion
in the sequence. It is therefore desirable to avoid such tie-points where possible because
they contribute to the registration of the moving objects as well as the background of the
image. In such case, it would seem sensible to employ e.g., the RANSAC algorithm [7], as
discussed in Section 4.8, which provides a methodology for fitting transforms on the basis
of an optimal subset of the observed tie-points.

Once feature tracks from the entire sequence of frames are extracted, the factorisa-
tion algorithm is then used to estimate the 3D positions of the feature points under the
assumption of orthography, thus generating “shape from motion”. The matrix of feature
tracks is factorised into two separate matrices: The 3D structure of the feature points in
the scene and the camera rotation parameters. In particular, the camera rotation param-
eters could have application to image registration because they specify how the camera is
moving from frame to frame through the sequence. Given an assumed model of the scene
(e.g., a flat 2D scene), they may then be used to estimate the transform model for the
purposes of registration. This would require further investigation.

The following areas could be considered for further work:

- Application of the KLT tracking method to a feature-based method of registration
in video sequences, in particular use of the RANSAC algorithm.
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- Investigation of the use of the factorisation method to determine transform models
for frame to frame registration.

- Development of ADSS modules and documentation.

4.8 Reconstruction Code

The “reconstruction” code is an ADSS implementation of Phil Torr’s structure from
motion Matlab toolkit and is based on techniques for 3D reconstruction from multiple
view geometry [7]. It is classified as a multiview, frame to frame, feature-based method of
registration. There are currently two ADSS modules that use the code to generate shape
from motion, motion and matching, but the code has not yet been applied directly to
image registration.

The method is based on the detection of feature points in a pair of images using
a Plessey corner detector [6] followed by correspondence point matcher. For any given
feature in one image, the ideal corresponding point in the second image is that which
has the maximum correlation in a local window. In contrast to the KLT tracker, the
feature points are detected independently in each frame and matching is not restricted
to consecutive frames. Rather, the user may specify a search distance that limits the
length of the correspondence vector. The method would therefore be suited to both frame
to frame and frame to reference matching. However, the use of the correlation window
restricts the method to images of a similar scale and pixel intensity; it is not well suited
to multimodal registration without the use of suitable preprocessing steps. In the context
of image registration, the correspondence point matcher generates tie-points that can be
used in a transform model estimation step.

For the purposes of generating structure from motion, the next step in the reconstruc-
tion process is to estimate the fundamental matrix F , which encapsulates the intrinsic pro-
jective geometry between the two views. It is independent of scene structure and depends
only on the camera’s internal parameters and relative pose. It is related to the camera
rotation parameters generated by the factorisation method described in Section 4.7, and
could potentially be applied to image registration. However, we are particularly interested
in the RANSAC (RANdom SAmple Consensus) algorithm that has been used to estimate
F on the basis of the tie-points [27]. The algorithm is quite general and has proven to
be a very successful robust estimator that is able to cope with a large number of outliers.
In particular, it should find ready application to the simpler problem of determining the
transform model from a set of tie-points. The RANSAC algorithm may be summarised as
follows [7]:

Objective

Robust fit of a model to a data set S that contains outliers

Algorithm

- Randomly select a sample of s data points from S and instantiate the model from
this subset.
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- Determine the set of data points Si which are within a distance threshold t of the
model. The Si is the consensus set of the sample and defines the inliers of S.

- If the size of Si (the number of inliers) is greater than some threshold T , re-estimate
the model using all the points in Si and terminate.

- If the size of Si is less than T , select a new subset and repeat the above.

- After N trials the largest consensus set Si is selected, and the model is re-estimated
using all the points in the subset Si.

The following areas could be considered for further work:

- Application of the reconstruction code to a feature-based method of registration, in
particular using the RANSAC algorithm.

- Investigation of the use of the fundamental matrix F to determine transform models
for registration.

- Development of further ADSS modules and documentation specifically for image
registration.

5 Summary

At present, most of the registration methods in ADSS are at various stages of com-
pletion, and some of the methods are really at the very beginning stages, in particular
those that deal with video image processing. At this time then, it would seem to make
good sense to agree on and carry out any necessary additional work before implementing
a study to compare the performance of the methods. A summary of some of suggestions
for future work is given in Table 1.

In the broader context however, there are several conclusions we might draw from
the study at this stage. The recognised registration methods we have implemented in
ADSS so far all are based in what is known as area-based registration, where correlation
type filters in rectangular windows are used to determine tie-points. As was illustrated
in Fig. 3, area-based methods actually constitute only half of the recognised types of
registration methods. The other half is based on (typically local) feature detection and
feature matching. Although ADSS has extensive capabilities in feature detection, the
capabilities have not been applied directly to the registration problem. Moreover, in
order to further develop this branch of registration methods, it might be useful to give
more thought to the characterisation of features in terms of their local spatial distribution
(e.g., moment analysis) and also the spatial relationships between features (e.g., graphs).
Other domains could also benefit from this work, e.g., peak detection in Radon transforms
could be improved using spatial characteristics (rather than just intensities). Work by
Miller and Caprari [15] has also pointed out the usefulness of moment analysis in automatic
target recognition.

The ADSS development paradigm could be described as one of designing separate
modules that are linked by a message passing and generic image handling mechanism to

21



DSTO–TR–1632

Table 1: Possibilities for future work on registration methods.

CDS Apply to frame to frame registration
Generalise transform model
Complete work on tie fft

HDRT Backtracking and consistency checks
Multiple translation estimates
Similarity matching
Interpolation of peak detection

Wavelets Apply to frame to frame registration
Integrate with CDS
Documentation

ARACHNID Apply to frame to frame registration
Generalise transform model
Documentation

Thevénaz Algorithm Rewrite distribution and librarise
Address implementation issues
Apply to frame to reference registration
Documentation

Optical flow Obtain and test Matlab code
Implement and document in ADSS

KLT Apply to frame to frame registration
Investigate application of factorisation
Implement and document in ADSS

reconstruction Apply to registration
Investigate application of fundamental matrix
Implement and document in ADSS
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form complete systems. This “loose coupling” approach is powerful because it is highly ex-
tensible and allows rapid prototyping of imaging systems. For example, if code is available
for an algorithm, it can simply be downloaded from the web, put into an ADSS module
and then used directly within ADSS with other modules. To a certain degree then, we are
interested in planning for modular implementations where possible. In particular, frame
to frame registration methods appear at this time to be the least mature of our capabili-
ties and we are currently well placed to consider design and implementation issues before
embarking on further implementation.

The stated primary objective of our efforts in shape from motion is to perform real-
time georeferencing of motion imagery with other forms of geo-imagery, e.g., registering a
video sequence from a flyover with aerial photography. This is essentially a scene-to-model
registration problem and it is apparent that we currently have few direct capabilities within
ADSS to perform this method. It would seem worthwhile to give this some further thought
and discussion with a view to charting a way forward in our efforts in image registration.
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